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Abstract
In this paper, exact analytical expressions for the entire phonon spectra in single-walled carbon
nanotubes with zigzag geometry are presented by using a new approach, originally developed
by Kandemir and Altanhan. This approach is based on the concept of construction of a classical
lattice Hamiltonian of single-walled carbon nanotubes, wherein the nearest and next nearest
neighbor and bond bending interactions are all included, then its quantization and finally
diagonalization of the resulting second quantized Hamiltonian. Furthermore, within this
context, explicit analytical expressions for the relevant electron–phonon interaction coefficients
are also investigated for single-walled carbon nanotubes having this geometry, by the phonon
modulation of the hopping interaction.

In a previous paper [1] (henceforth referred to as I), we
propose a self-consistent analytical procedure that allows us
to calculate the phonon dispersion relations in single-walled
carbon nanotubes (SWCNTs). Qualitatively, it consists of
three main stages: first, we construct, from the geometrical
considerations, a classical Hamiltonian for lattice vibrations
in SWCNTs by taking into account only the nearest and next
nearest neighbor as well as bond bending interactions, in
terms of generalized coordinates; second, a diagonalization
procedure through two subsequent unitary transformations for
the quantized Hamiltonian, i.e. for the phonon Hamiltonian,
is performed; finally, we investigate the exact analytical
expressions for the electron–phonon interaction amplitudes in
these structures. Furthermore, we introduce a diagonalization
procedure for the tight-binding electronic Hamiltonian so as
to be consistent with the diagonalization scheme performed
in the phonon part. Subsequently, we derive the analytical
dispersion relations for whole phonon modes in SWCNTs,
along with the description of analytical electron–phonon
interaction terms corresponding to these modes, within the
Fröhlich sense. However, to be self-contained, there we limit
ourselves to the discussion of phonon spectra in SWCNTs
with armchair geometry only. In the present paper, both
analytical phonon dispersion relations and associated electron–
phonon interaction amplitudes in single-walled zigzag carbon
nanotubes will be investigated.

Historically, since the discovery of carbon nanotubes [2]
and their subsequent syntheses [3, 4], there exist various
experimental and theoretical investigations on the physical
properties of these novel materials [5–9]. In particular,
the observation of superconductivity in nanotubes [10]
and nanotube ropes [11], electron–phonon interactions and
superconductivity [12] have been a focus of interest in these
one-dimensional systems. In the literature, within only the
last few years, there has been a dramatic growth of interest
in studies on phonon dispersion relations in SWCNTs [13–23].
Moreover, due to their crucial role in understanding electronic,
optical and transport properties of these structures, many
theoretical investigations in electron–phonon interactions have
also been performed. Of these, so far, electron–phonon
interaction studies in nanotubes are achieved by employing
the tight-binding model, for the interaction of electrons
with acoustical phonons [24] and for linear electron–phonon
coupling displaying a deformation type of approximation [25].
Scattering by optical phonons is also important for transport
properties and for the major source of broadening for certain
Raman peaks [26]. The first attempt to calculate the interaction
of an electron with acoustical and optical phonons is achieved
by assuming phonon modulation of the hopping interaction
in armchair and zigzag nanotubes [27]. Recently, the
electron–phonon matrix element in SWCNTs is developed
by density functional theory [28] within the tight-binding
approach. The effect of electron–phonon interaction on
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the Raman intensity [29], and intraband scattering [30], is
considered within a symmetry-adapted nonorthogonal tight-
binding model. A study of lattice vibrations in SWCNTs based
on a force-constant model is also notable [31].

In this paper, we investigate analytical phonon frequencies
for zigzag SWCNTs together with associated electron–phonon
interactions, based on the same arguments in our earlier
work. Since, except for geometrical differences, analytical
considerations of zigzag SWCNTs will be similar to those of
armchair SWCNTs as outlined in I, the same arguments can
then be directly extended to the case of the phonon dispersion
curves of (n, 0) SWCNTs. To achieve this, we shall briefly
review our model, by recalling the main features of the scheme
proposed in I needed to extend it to zigzag SWCNTs. In
particular, we believe that emphasizing the differences arising
from the geometry will be explanatory itself, so as to provide
a recipe for how the considerations of these two subsequent
publications can be extended to more complicated structures,
or at least provide an algorithm for future numerical studies in
such structures.

On the basis of the procedure described in I, by dropping
the off-diagonal terms, the total Hamiltonian of a system of
electrons and phonons in SWCNTs is found to be composed of
two terms as follows:

H =
∑

k

[
E (+)C†

A,kCA,k + E (−)C†
B,kCB,k

]
+

∑

i

Hi (1)

with

Hi =
∑

q

�ω̃i (q)
(

a†
qi aqi + 1

2

)
+

∑

q

∑

k

Di (k, q)

×
(

a†
qi + aqi

)
. (2)

Here, the first term in equation (1) is, after a proper Bogoliubov
unitary transformation proposed first in I, the well known
spinless tight-binding Hamiltonian with energies E (±) =
±J0|�(k)|, where J0 is the hopping parameter and takes a
value of approximately 2.4–3.1 eV, and �(k) is the sum of
phase factors of atom A with its three nearest neighbor B
atoms or vice versa. C†

A(B),k and CA(B),k are the creation
and annihilation operators for an electron with mode k,
respectively. In equations (1) and (2) i is the phonon band
index and runs from 1 to 6. The second term in equation (1) is
portioned again into the sum of two terms, as in equation (2):
while the former is the Hamiltonian of the free phonon
field, the latter accounts for the electron–phonon interaction
Hamiltonian, and is represented with the interaction amplitude
given by

Di (k, q) =
[
L(−)

i C†
B,k+qCB,k − L(+)

i C†
A,k+qCA,k

]

+ exp (+iξ)
[
L(+)

i C†
A,k+qCB,k

+ exp (−iξ)L(−)

i C†
B,k+qCA,k

]
(3)

with �± = {exp[−iξ(k)] ± exp[+iξ(k + q)]}/2 and L(±)

i =
MT(+)

i �∗+ ± MT(−)
i �∗−. In equation (2), a†

qi and aqi are the
creation and annihilation operators for phonons, respectively
for q modes. ξ is the argument of the �(k) and MT(±)

i is
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Figure 1. A three-dimensional plot of a (10, 0) zigzag SWCNT
showing the nearest and next nearest neighbors of carbon atom A.

the electron–phonon interaction amplitudes for intraband and
interband scattering whose exact analytical expressions are all
obtained in the framework of the theory developed here. In
other words, while the first term in equation (3) represents
the intraband scattering of an electron from the carbon atom
A (B) with wavevector k ≡ (k, γ ) to the state with wavevector
q + k ≡ (q + k, α + γ ) of the carbon atom A (B), the second
one describes the interband scattering of an electron from the
carbon atom A (B) with wavevector k ≡ (k, γ ) to the state
with wavevector q + k ≡ (q + k, α + γ ) of the carbon atom
B (A).

Here, it should be stated that, for the most part, geometric
considerations, i.e. the notation used in construction of a zigzag
SWCNT, are due to Jeon and Mahan [22]. The key difference
between armchair and zigzag SWCNTs is simply that their
geometric structures are different. In contrast to armchair
filling, for zigzag geometry we again consider two types of
carbon atom A and B in a unit cell but require, as shown
in figure 1, the two-dimensional graphene plane to be filled
by hexagons so as to give a zigzag geometry when rolled up
around the z axis [32, 33]. In order to define the coordinates of
the zigzag SWCNT to be used as the basis for our formulation,
we first define the angle θz between A and B atoms along
the circumference. From the geometric construction, it can
be easily shown that the relation sin(θz/2) = a

√
3/2R holds

and it reduces to θz ≈ a
√

3/R for zigzag SWCNTs with large
radius.

By constructing the zigzag SWCNT, we consider a
hexagonal lattice of carbon atoms as presented in I, but we
draw it here vertically as in figure 2. The lattice coordinates
of this structure are still defined by the vectors Ri j = ia1 + ja2

with integer i and j , but now where a1 = √
3a(1,

√
3)/2

2
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Figure 2. Graphene. Rolling it up around the z-axis results in an
SWCNT having zigzag geometry, as shown in figure 1. Graphical
illustrations of nearest and next nearest neighbors of A (B1) atoms
are also given in the same picture together with the relevant phases.

and a2 = √
3a(1, 0) are the base vectors, as shown in (x, y)

coordinate systems in figure 2, whose magnitude is the lattice
constant of graphene, i.e.

√
3a, where a is the nearest neighbor

distance between two carbon atoms, i.e., a = aC–C = 1.42 Å.
When this plane is rolled up into a cylinder to form a zigzag
tube (n, 0), the coordinates are to be designated by R	m =
	a1+m(a1+a2), where the integer 	 denotes the position along
the z-axis and takes the values of 	 = 0, 1, . . . , N . Here, N is
the number of atomic layers along the z-axis, and m labels the
carbon atoms along the circumference of the tube and takes the
values of m = 0, 1, . . . , n − 1. [27, 34, 35]

Accordingly, it is easy to show that the lattice coordinates
of this two-dimensional graphene plane are now defined by the
vectors

RA,m	 = [R cos (θm	) , R sin (θm	) , c	] , (4)

three nearest neighbor B type atoms at

RB,m	 =
[

R cos

(
θm	 + θz

2

)
, R sin

(
θm	 + θz

2

)
, c	 + a

2

]
,

RB,m−1,	 =
[

R cos

(
θm	−θz

2

)
, R sin

(
θm	−θz

2

)
, c	+a

2

]
,

RB,m,	−1 = [R cos (θm	) , R sin (θm	) , c	 − a] ,

(5)
and six next nearest neighbor A type atoms at

RA,m,	∓1 =
[

R cos

(
θm	 ∓ θz

2

)
, R sin

(
θm	 ∓ θz

2

)
,

c(	 ∓ 1)

]
,

RA,m±1,	∓1 =
[

R cos

(
θm	 ± θz

2

)
, R sin

(
θm	 ± θz

2

)
,

c(	 ∓ 1)

]
,

RA,m±1,	 = [
R cos (θm	 ± θz) , R sin (θm	 ± θz) , c	

]
,

(6)

where θz = 2π/n and c = 3a/2. In fact, θm	 is the angle seen
by two adjacent A or two adjacent B carbon atoms along the
circumference of the tube. First, by using equations (5)and (6)
together with equation (4) one can readily introduce three unit
vectors connecting atom A to its three nearest neighbor B
atoms, then six unit vectors between atom A and its six next
nearest neighbor A atoms. Second, to construct the potential
part of the phonon Hamiltonian, these unit vectors are used to
get the nearest and next nearest neighbor interactions, given
by terms proportional to squares of χ

(i)k
q, j = δk

i · (Q(i)
k − QA),

where k = 1 for nearest and k = 2 for next nearest neighbor
displacements. Finally, considering bond bending interactions
of the form �B(A) = ∑3

i=1 ni · [Q(i)
A(B) − Q(0)

B(A)] completes the
scheme.

To be able to write the classical Hamiltonian representing
the lattice vibrations, which is first proposed in I, and thereby
to make the transition to its quantized version, we first
introduce matrix notation for the lattice displacements, such
as a 6 × 1 column vector Q, with Hermitian conjugate
Q

† = ( Q∗
Aρ Q∗

Aθ Q∗
Az Q∗

Bρ Q∗
Bθ Q∗

Bz ). Then, the
total Hamiltonian for the SWCNTs can be arranged into the
form

Hlat = 1
2 M

∑

q≡(q,α)

Q̇
†

C
†

CQ̇ + 1
2 K1

∑

q≡(q,α)

Q
†

D Q, (7)

where D = C
†
AC = ∑3

k=1 rkC
†
A

k
C has been used

with Ai j = ∑3
k=1 rk A

k
i j . The elements of the matrix D

in equation (7) are defined as Di j = Ãi j for i ( j) =
1, 2, 3 (1, 2, 3); Di j = Ãi j/2 for i ( j) = 1, 2, 3 (4, 5, 6)

and j (i) = 4, 5, 6 (1, 2, 3); Di j = Ãi j/4 for
i ( j) = 4, 5, 6 (4, 5, 6). From the above zigzag geometry
considerations, the diagonal elements of Ãi j can easily be
found in terms of Ai j , whose non-zero elements are all
presented in the appendix,

Ã11 =
[
3 (sz)

2 C (+)
1

]
+ 8̃r2

[
2 (̃sz)

2 (̃cα)
2 + (sz)

2 S(0)
2

]

+ 4̃r3C (−)

3

Ã22 =
[
3c2

z C (−)
1

]
+ 8̃r2

[
2 (̃cz)

2 (̃sα)2 + (cz)
2 C (0)

2

]

+ 8̃r3 (sz)
2 s̃2

α

Ã33 =
[
3 − C (0)

1

]
+ 24̃r2C (0)

2

Ã44 =
[
3 (sz)

2 C (−)

1

]
+ 8̃r2

[
2 (̃sz)

2 (̃cα)
2 + (sz)

2 S(0)

2

]

+ 4̃r3C (+)
3

Ã55 =
[
3c2

z C (+)
1

]
+ 8̃r2

[
2 (̃cz)

2 (̃sα)2 + (cz)
2 C (0)

2

]

+ 8̃r3 (sz)
2 s̃2

α

Ã66 =
[
3 + C (0)

1

]
+ 24̃r2C (0)

2

(8)

with

C (±)
1 = 1 ± c3q c̃α

C (0)
1 = c3q c̃α + 2

(
2c2

3q − 1
)

3
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C (0)

2 = 1 + 2c2
2qs2

α − c2
2q − s2

α

S(0)

2 = 1 + 2s2
2qs2

α − s2
2q − s2

α

C (±)
3 = 1 + 2cz

(
1 + c̃αc1q

) + 2c2
z

(
1 + c̃2

α

)

± (1 + 2cz)
(
2c2

3q − 1 + 2̃cαczc3q
)
,

while the non-diagonal and non-zero terms are given by

ReÃ24

ReÃ15

}
= ∓3szczs3q s̃α ∓ 4̃r3sz̃sα

[
s3q (1 + 2cz) ± s1q

]

ReÃ16

ReÃ34

}
= −√

3sz
(
1 ± c3q c̃α

)

ReÃ23

ReÃ56

}
= ±√

3czs3q s̃α + 4
√

3̃r3cz̃sαs1q,

(9)

respectively, where we have used the following abbreviations:
s̃α = sin(αθz/2), c̃α = cos(αθz/2), sα = sin(αθz/4), cα =
cos(αθz/4), snq = sin(qc/n) and cnq = cos(qc/n).

Now, we introduce a†
qβ and operators aqβ for the lattice

displacements, where aqβ (a†
qβ) defines annihilation (creation)

operators for the center of mass and relative motions β =
1, 2, 3, and β = 4, 5, 6, separately, and then we rearrange
equation (7) into the second quantized form. Finally, after the
first unitary transformation, U1 = exp[S1(q)] with S1(q) =∑

k λk(a2
qk − a†2

qk)/2, which in fact partially diagonalizes
the quantized lattice Hamiltonian, it is easily verified that it
becomes

H̃ ph = 1

2

∑

q

6∑

i=1

[
�ω

(0)

i (q)
(

a†
qi aqi + aqia

†
qi

)

+
∑

j(�=i)

�ω
(0)

i j (q)

(
a†

qi aq j + a†
qi a

†
q j + H.c.

) ]
, (10)

with ω
(0)
i (q) = (Ãi i/6)1/2, ω

(0)
i j (q) = Re Ãi j/2

√
6(ÃiiÃ j j)

1/4.
It should be noticed that first, a rescaling of phonon frequencies
and therefore phonon energy to the well known Raman line,
ω0 = 1600 cm−1, which is defined by the relation K1/M =
ω2

0/3, has been performed for the sake of making the total
Hamiltonian in dimensionless form. In other words, hereafter,
dimensionless energy and frequencies will be used as H =
H̃/�ω0, ω

(0)

i (q) = ω
(0)

i (q)/ω0, ω
(0)

i j (q) = ω
(0)

i j (q)/ω0. In our
theoretical treatment we have used two adjustable parameters,
the ratios of spring constants r̃2 = K2/K1 and r̃3 = K3/K1.
We take these two scaling factors for force-constant parame-
ters1 as r̃2 = 0.060, r̃3 = 0.024 as in [22]. This diagonalization
does not give satisfactory results for the phonon spectra (see
the left panel of figure 3), therefore further diagonalization of
the nonlinear terms in equation (10) is needed. Therefore, we
introduce the second unitary transformation, U2 = exp[S2(q)]
with S2(q) = ∑

j �=i λ j (aqi a
†
q j − a†

qi aq j). The entire proce-
dure of such a diagonalization of equation (10) is documented
in I in detail and therefore will not be repeated here. After

1 It should be noted here that, to make a comparison with those calculated
in [22], we have taken two scaling factors to be r̃2 = 0.060, r̃3 = 0.024,
in contrast to those indicated in their work. In fact, though in [22] they have
indicated a different set of parameters, i.e. r̃2 = 0.090, r̃3 = 0.033, they have
used our parameters in performing their numerical calculations. Nevertheless,
the same calculations can also be easily done with this set.

0

200
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600

800

1000

1200

1400

1600

Figure 3. For a (10, 0) zigzag SWCNT with α = 0, q-dependence of
the phonon spectra according to ω

(0)

i (left panel), arising from the
first diagonalization. In the right panel, again q-dependence of the
phonon spectra, but after the second unitary transformation,
according to equation (12), together with their comparison with those
found by Jeon and Mahan (the solid and dashed lines correspond to
the results of equation (12), the dotted lines to those of [21]). To
make the comparison easy, the results of [21] are also given in the
inset.

the unitary transformation, by dropping the higher order terms,
equation (10) can be rearranged into the form

Hi,ph = 1
2

∑

q≡(q,α)

ω̃i

(
a†

qi aqi + aqi a
†
qi

)
, (11)

with

ω̃i (q) = 1
3

[
−�̃

(2)

(i jk) + 2�̃
(+)

(i jk) cos 1
3 �̃(i jk)

]
(12)

where ω̃i are the solutions of a cubic algebraic equation.
Here, �̃

(2)

(i jk), �̃
(+)

(i jk) and �̃(i jk) are functions of Ãi j given by
equations (8) and (9).

Further, we shall consider the electron–phonon interac-
tions in zigzag SWCNTs. The knowledge of phonon frequen-
cies in these structures allows us directly to calculate electron–
phonon interaction amplitudes analytically. The treatment of
electron–phonon interaction amplitude is one of the central is-
sues of our previous work and will not be repeated here. But, to
summarize, our calculations proceed in three stages: first, we
calculate the effect of two successive transformations for the
phonon part on this interaction; then, we take into account the
effect of the unitary transformation for the electronic part of
the electron–phonon interaction amplitude; then, we get the in-
teraction amplitudes from the resulting Hamiltonian. This pro-
cedure results in the second part of equation (2), with the co-

4
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Figure 4. Plot of ω̃i (q) according to equation (12) from α = 0 to 10 for a (10, 0) zigzag SWCNT. The inset shows the low frequency–small
wavevector region.

efficients of MT(±)
i (q, k) = cos �M

T(±)

i (q, k) given in equa-
tion (3). Here,

M
T(±)

i (q, k) = J1

�ω0

(
�

nN M

) 1
2 1

2

(
A

±
i + D

±
i

) 1√
ωi (q)

(13)
where J1/J0 ∼ 2 Å

−1
in graphene and the second term in

parenthesis takes non-zero values for i �= 3, 6, otherwise
it should be treated as zero. For an (n, 0) SWCNT, the
coefficients of A

±
i and D

±
i are the functions of parameters

included in the theory and are all presented as follows:

(
A

+(−)

1(4)

A
+(−)

5(2)

)
= √

3

(
szC

±
1

czC±
2

)

(
A

−(+)

1(4)

A
−(+)

5(2)

)
= i

√
3

(
sz S±

1

cz S±
2

)

(
A

−(+)

6(3)

A
+(−)

6(3)

)
= −

(
i(S±

1 + S±
3 )

(C±
1 − C±

3 )

)

(14)

with

C±
1 = ± (

c0
kq c̃αγ ± c0

kcγ

)
, C±

2 = ± (
s0

kq s̃αγ ± s0
k sγ

)

S±
1 = ∓ (

s0
kq c̃αγ ∓ s0

k cγ

)
, S±

2 = ± (
c0

kq s̃αγ ∓ c0
k sγ

)

C±
3 = c0

2k ± c0
2kq , S±

3 = s0
2k ∓ s0

2kq

for the nearest neighbor and

D
+
1 /cz = D

+
5 /sz = c̃αc0

q − s̃αs0
q − 1

+ i
(
s0

kq c̃αγ + c0
kq c̃αγ − s0

k cγ − c0
ksγ − c̃αs0

q − s̃αc0
q

)

D
+
2 /sz = D

+
4 /cz = c̃αc0

q − s̃αs0
q + 1 + s0

kq s̃αγ

− c0
kq c̃αγ − c0

kcγ + s0
k sγ − i

(
c̃αs0

q + s̃αc0
q

)

D
−
1 /cz = D

−
5 /sz = c0

kq c̃αγ − s0
kq s̃αγ − i

(
cγ s0

k + sγ c0
k

)

D
−
2 /sz = D

−
4 /cz = −i

(
s0

kq c̃αγ + c0
kq s̃αγ

) − (
cγ c0

k − sγ s0
k

)

(15)

for bond bending interactions.
To test our theory further, in figure 3, for a (10, 0) zigzag

SWCNT, we compare the analytical results of equation (11)
with numerical ones in [22]. Our theory agrees in some
respects with the work of Jeon and Mahan [22]. Both theories
give six non-degenerate modes, of which two are acoustical
and the rest are optical for α = 0. One of two acoustical
modes, ω̃3 is longitudinal and arises from the quantization
of Qz component, and the other is a torsional one and arises
from the Qθ component; they have velocities near the �-point,
υ3 = 22.35 km s−1 and υ2 = 12.74 km s−1, respectively. The
higher two optical modes ω̃5 and ω̃6, which arise from qθ and
qz , are 1580.30 cm−1 and 1600 cm−1, respectively, and Raman
active. The remaining two optical modes ω̃1 and ω̃4 take place
at 326.76 cm−1 and 877.13 cm−1 at the �-point, and arise from
Qρ and qρ , respectively. Moreover, when moving away from
the �-point towards the boundary of the Brillouin zone, two
higher optical modes mix with each other. In other respects,
there are some deviations; in particular, (i) the lower optical
mode ω̃1 crosses two acoustical modes; (ii) our results do not
show upward curvature of the highest LO-phonon dispersion,
i.e. overbending feature; (iii) the inset of figure 4 shows that
equation (11) for α = ∓2 overestimates the lowest LO-phonon
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mode; (iv) the appearance of a flexure mode for α = ∓1 differs
from those obtained in our work.

The overall behavior of calculated results from equa-
tion (12) is shown in figure 4. In this figure, drawing the
phonon dispersion curves so as to span the whole range of α

variation, we get a three-dimensional picture, i.e. ω as a func-
tion of both qc and α. We note that α quantum numbers in-
crease as the radius R of the tube increase. This means ex-
actly that, for very large R, α becomes continuous, so that the
shown projectiles create phonon dispersions along the circum-
ferential direction, which corresponds to the �K ′ direction of
the graphene [36]. For tubes with large radius, such a picture
helps us to visualize the two-dimensional k-vector dependence
of the energy surfaces of the graphene.

In summary, our theory outlined above presents explicit
analytical expressions for all phonon modes in zigzag SWC-
NTs and associated electron–phonon interaction amplitudes.
As also emphasized earlier, the origin of the discrepancies with
the existing literature may be due to the non-inclusion of bilin-
ear terms in phonon creation and annihilation operators. The
diagonalization of such terms should be further investigated.
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Appendix

All the non-zero matrix elements A
(k)
i j of the square matrix

A of order 6 × 6 can be calculated directly from χ
(i)k
q, j =

δk
i · (Q(i)

k − QA) such that the diagonal ones are

A
(1)
11 =A

(1)

44 = 3 (sz)
2 /2

A
(1)

22 =A
(1)

55 = 3 (cz)
2 /2

A
(1)
33 = A

(1)
66 = 3/2

(A.1)

and non-diagonal ones are

A
(1)
13 = −A

(1)
46 = −√

3sz/2

A
(1)

14 = 3
(

eiφ0
1 + eiφ0

2

)
(sz)

2 /4

A
(1)
15 = −A

(1)
24 = 3

(
eiφ0

1 − eiφ0
2

)
szcz/4

A
(1)

16 = −A
(1)

34 = √
3
(

eiφ0
1 + eiφ0

2

)
sz/4

A
(1)
25 = −3

(
eiφ0

1 + eiφ0
2

)
(cz)

2 /4

A
(1)
26 = A

(1)
35 = √

3
(

eiφ0
1 − eiφ0

2

)
cz/4

A
(1)

36 = −
(

eiφ0
1 + eiφ0

2 + 4eiφ0
3

)
/4

(A.2)

for the nearest neighbor interactions. For the next nearest
neighbor and bond bending interactions, they are found to be

A
(2)

11 = A
(2)

44 = 2
[
4 (̃sz)

2 C2
1 + (sz)

2
(
C2

2 + C2
3

)]

A
(2)
22 = A

(2)
55 = 2

[
4 (̃cz)

2 S2
1 + (cz)

2
(
S2

2 + S2
3

)]

A
(2)

33 = A
(2)

66 = 6
(
S2

2 + S2
3

)

A
(2)
12 = A

(2)
45 = 2i

[
4̃sz c̃z S1C1 + szcz (S2C2 − S3C3)

]

A
(2)

13 = A
(2)

46 = 2i
√

3sz (S2C2 + S3C3)

A
(2)
23 = A

(2)
56 = 2

√
3cz

(
S2

2 − S2
3

)

(A.3)

and

A
(3)
11 = A

(3)
44 = 2 + 4cz (̃cα cos qc + 1) + 4c2

z

(
c̃2
α + 1

)

A
(3)
22 = A

(3)
55 = 4s2

z s̃2
α

A
(3)
14 = −2 (1 + 2cz)

[
eiφ0

3 + 2̃cαcze
−iφ0

3 /2
]

A
(3)

15 = −A
(3)

24 = 2isz̃sαe−iφ0
3/2 (1 + 2cz)

A
(3)
12 = −2isz̃sα

(
e−iqc + 2̃cαcz

)

A
(3)

45 = −2isz̃sα

(
e+iqc + 2̃cαcz

)

(A.4)
respectively. Here, we defined the phase factors for the
nearest neighbor interactions as φ0

1 = (qa + αθz)/2, φ0
2 =

(qa − αθz)/2 and φ0
3 = −qa, and φ1 = −φ4 = αθz ,

φ2 = −φ5 = qc + (αθz/2), φ3 = −φ6 = qc − (αθz/2)

for next six nearest neighbor atoms of A. To simplify the
notation we have introduced the following designations: sz =
sin(θz/4)cz = cos(θz/4), s̃z = sin(θz/2)̃cz = cos(θz/2) and
Sj = sin(φ j/2)C j = cos(φ j/2) for j = 1, 2, . . . , 6.
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